miércoles, 27 de marzo de 2013

Universos paralelos


UNIVERSOS PARALELOS Una de las versiones científicas más curiosas que recurren a los universos paralelos es la interpretación de los universos múltiples o interpretación de los mundos múltiples2 de Hugh Everett (IMM). Dicha teoría aparece dentro de la mecánica cuántica como una posible solución al problema de la medida en mecánica cuántica. Everett describió su interpretación más bien como una metateoría. Desde un punto de vista lógico la construcción de Everett evade muchos de los problemas asociados a otras interpretaciones más convencionales de la mecánica cuántica, sin embargo, en el estado actual de conocimiento no hay una base empírica sólida a favor de esta interpretación. El problema de la medida, es uno de los principales "frentes filosóficos" que abre la mecánica cuántica. Si bien la mecánica cuántica ha sido la teoría física más precisa hasta el momento, permitiendo hacer cálculos teóricos relacionados con procesos naturales que dan 20 decimales correctos y ha proporcionado una gran cantidad de aplicaciones prácticas (centrales nucleares, relojes de altísima precisión, ordenadores), existen ciertos puntos difíciles en la interpretación de algunos de sus resultados y fundamentos (el premio Nobel Richard Feynman llegó a bromear diciendo "creo que nadie entiende verdaderamente la mecánica cuántica"). El problema de la medida se puede describir informalmente del siguiente modo: De acuerdo con la mecánica cuántica un sistema físico, ya sea un conjunto de electrones orbitando en un átomo, queda descrito por una función de onda. Dicha función de onda es un objeto matemático que supuestamente describe la máxima información posible que contiene un estado puro. Si nadie externo al sistema ni dentro de él observara o tratara de ver como está el sistema, la mecánica cuántica nos diría que el estado del sistema evoluciona determinísticamente. Es decir, se podría predecir perfectamente hacia dónde irá el sistema. La función de onda nos informa cuáles son los resultados posibles de una medida y sus probabilidades relativas, pero no nos dice qué resultado concreto se obtendrá cuando un observador trate efectivamente de medir el sistema o averiguar algo sobre él. De hecho, la medida sobre un sistema es un valor aleatorio entre los posibles resultados. Eso plantea un problema serio: si las personas y los científicos u observadores son también objetos físicos como cualquier otro, debería haber alguna forma determinista de predecir cómo tras juntar el sistema en estudio con el aparato de medida, finalmente llegamos a un resultado determinista. Pero el postulado de que una medición destruye la "coherencia" de un estado inobservado e inevitablemente tras la medida se queda en un estado mezcla aleatorio, parece que sólo nos deja tres salidas: (A) O bien renunciamos a entender el proceso de decoherencia, por lo cual un sistema pasa de tener un estado puro que evoluciona deterministicamente a tener un estado mezcla o "incoherente". (B) O bien admitimos que existen unos objetos no-físicos llamados "conciencia" que no están sujetos a las leyes de la mecánica cuántica y que nos resuelven el problema. (C) O tratamos de proponer una teoría que explique el proceso de medición, y no sean así las mediciones quienes determinen la teoría.


No hay comentarios:

Publicar un comentario